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Abstract

This thesis focuses on the application of matrix determinants as a means of

producing number-theoretic results. Motivated by an investigation of properties of

the Riemann zeta function, we examine the growth rate of certain determinants of

zeta values. We begin with a generalisation of determinants based on the Hurwitz

zeta function, where we describe the arithmetic properties of its denominator and

establish an asymptotic bound. We later employ a determinant identity to bound

the growth of positive Hankel determinants. Noting the positivity of determinants

of Dirichlet series allows us to prove specific bounds on determinants of zeta values

in particular, and of Dirichlet series in general. Our results are shown to be the

best that can be obtained from our method of bounding, and we conjecture a slight

improvement could be obtained from an adjustment to our specific approach.

Within the course of this investigation we also consider possible geometric

properties which are necessary for the positivity of Hankel determinants, and we

examine the role of Hankel determinants in irrationality proofs via their connection

with Padé approximation.
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Notation

N The set of natural numbers {1, 2, 3, . . .}.

Q The set of rational numbers.

R The set of real numbers.

R2 The set of ordered pairs (x, y) of real numbers x, y ∈ R.

Sn The symmetric group of order n.

Z The set of integers.

adj(M) The adjugate of the square matrix M .

denom(P (x)) The integer denominator of the coefficients of P (x) ∈ Q[x].

lcm{n1, n2, . . .} The least common multiple of a set of natural numbers.

φ(n) The number of positive integers less than n that are coprime to n.

<(s) The real part σ of the complex number s = σ + it, with σ, t ∈ R.

sgn(π) The sign of a permutation π ∈ Sn.

sgn(x) The sign of x ∈ R, equal to x/|x|, x 6= 0.

f(n) = O(g(n)) The ratio |f(n)/g(n)| is bounded as n tends to ∞, g(n) 6= 0.

f(n) = O(g(n)) The ratio |f(n)/g(n)| tends to 0 as n tends to ∞, g(n) 6= 0.

f(n) � g(n) Equivalent to f(n) = O(g(n)) and g(n) = O(f(n)).

C, c A constant (different subscripts denote different constants).

p A prime p ∈ N.
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